• Meniu

    Copyright © EN.VARIOUSMAG.EU - Anomalies from around the world

    Reklama viršuje

    Antimatter - what is it?

    Variousmag
    Friday, October 11, 2019 Last Updated 2019-10-16T18:25:09Z
    In modern physics, antimatter is defined as a material composed of the antiparticles (or "partners") of the corresponding particles of ordinary matter.

    Minuscule numbers of antiparticles are generated daily at particle accelerators – total production has been only a few nanograms  – and in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form anti-atoms.

    No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling.

    In theory, a particle and its anti-particle (for example, proton and antiproton) have the same mass, but opposite electric charge and other differences in quantum numbers. For example, a proton has positive charge while an antiproton has negative charge.

    A collision between any particle and its anti-particle partner leads to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particle-antiparticle pairs.

    Annihilation usually results in a release of energy that becomes available for heat or work. The amount of the released energy is usually proportional to the total mass of the collided matter and antimatter, in accordance with the mass–energy equivalence equation, E=mc2.

    Antimatter particles bind with each other to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. The nuclei of antihelium have been artificially produced with difficulty, and these are the most complex anti-nuclei so far observed.

    Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.

    There is strong evidence that the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles developed is called baryogenesis.
    Komentarai

    Tampilkan

    Latest news

    Versions

    +